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@ omics  What is sequencing, and why bothering?

Sequencing = A technique for determining the exact sequence of nucleotides, or bases, in a DNA or RNA molecule.

“... [A] knowledge of sequences could contribute much to our under-
standing of living matter.”
[Frederick Sanger]

* 2 Noble prices
» determining the amino acid sequence of insulin and other proteins
» The Sanger (chain-termination) method for DNA sequencing
* One of the first to sequence RNA (5S rRNA) in 1967 (Robert W. Holley
and team sequenced first RNA (S. cerevisae Ala-tRNA in 1965)
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Sadava, D. E. (2011). Life: the science of biology. 9. ed. Sinauer Associates.
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Sequencing = A technique for determining the exact sequence of nucleotides, or bases, in a DNA or RNA molecule.
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@ OMmICs  Sequencing on its way to be democratized
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https://genomize.com; https://www.precedenceresearch.com; wikipedia.org/wiki/transistor_count; Satam H, et al. Biology 2023 12(7):997, doi:
https://doi.org/10.1016/j.csbj.2019.11.002.
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James M. Heather, Benjamin Chain, Genomics, 2016, https://doi.org/10.1016/j.ygeno.2015.11.003



omics  Classical sequencing —the gold standard
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Maxam-Gilbert method Sanger method
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https://www.thermofisher.com/ca/en/homellife-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/next-generation-sequencing/dna-sequencing-history.html
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Roche (454) GSFLX Workflow:

Pyrosequencing Library construction Emulsion PCR PTP loading

¢ Principle in 1993 (Pal Nyren et al. U

d o
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¥ Signal image

incorporation

+ Parallel sequencing Sy iiainis .
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IIIIIIIIIIIIIIIIIIITm . CNutileotide:equer;cs .
Advantages

+ High throughput compared to Sanger
(600Mbp/10hrs vs 2Mbp/day)

Annealed
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Sulfurylase
Luciferase Lucnfenn

% Real-time monitoring containing millons
. of copies of a single
’:’ No e|eCtr0ph0reSIS ;:l':;rszymampmiedg Light + Oxy Luciferin g & T A 8 & 7
% Suitable for SNP and indel detection e
Pyrosequencing reaction TRENDS in Genetics

Disadvantages
¢ Short read length (100-300bp vs 500-1000bp)

« Poor sequencing capacity for homopolymer,
repetitive and GC-rich regions
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Mardis, Elaine R. Trends in Genetics Volume 24, Issue 3, 133 - 141 (2008)



©]omics The 2nd generation: NGS/shotgun/massive
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1ttps://www.genome.gov/genetics-glossary/DNA-Sequencing;
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@ omics The 2"d generation: NGS/shotgun/massive
~ parallel sequencing

USASK
(454 (Roche), SOLID (Thermo Fisher), GeneReader (Qiagen), lon Torrent (Thermo Fisher))
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end of a DNA circularization and
template, followed cleavage generate a Hybridization
by template circular template with DNA nanoballs are
circularization four different adapters immobilized on a
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. X Nature Reviews | Genetics
1ttps://www.genome.gov/genetics-glossary/DNA-Sequencing
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The 2"d generation: NGS/shotgun/massive

parallel sequencing
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The 2"d generation: NGS/shotgun/massive
parallel sequencing
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ttps://www.genome.gov/genetics-glossary/DNA-Sequencing: https://www.illumina.com/sciencesiecnnoiogymexi-generauon-sequerncing/ sequericing-Lecrnnoiogy. nur
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Technology

» Beginnings in 1989, seminal study in 2018

» Electrical current, drives an unwound
oligomers (RNA/DNA) through an immobilized
protein nanopore channel, disrupting the
current as they passed through, in a manner
characteristic of their base composition.

+ Detection of electrical signals not
fluorescence

*

L)

CR)

L)

)

Advantages

+ Read limitations only by length of HMW DNA
(Read length N50: 100-200kbp - 4Mbp)

De novo genome assemblies

» Genomic + Epigenomic information

Field sequencing

7
0’0

0’0

7
0’0

Disadvantages
s Lower accuracy (Phred Q score ~20)

X/

s Lower output in gigabases (10s Gb/FC)

Wang et al. Nat Biotechnol 39, 1348-1365 (2021). https://doi.org/10.1038/s41587-021-01108-x
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Single molecule DNA sequencing

Nanopore DNA sequencing

Sequence 10 thousand to 4 million DNA bases per pore
40,000 - 250,000 pores per device
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Sequence upwards of 200 billion DNA bases per device
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Sample preparation
s HMW DNA extraction is sensitive process

s QC requires specific equipment (Femtopulse)

% 2D (library for template + complement strand
sequencing)

+ 1D (each strand ligated and sequenced
separately)

% 1D2 (sequential sequencing of both strands)

Wang et al. Nat Biotechnol 39, 1348-1365 (2021). https://doi.org/10.1038/s41587-021-01108-x

3'd Generation Sequencing - ONT

b )
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ONT data ideal for
¢ Multiploid organisms

s Complex genomes (e.g. recurrent hybrids,
young and fast evolving genomes, genomes
with high plasticity)

+ Organisms without reference genomes or
close relatives with reference genomes (de
novo assembly)

D)

» Detection of 5-Methylcytosin (5mC)
modifications

Wang et al. Nat Biotechnol 39, 1348-1365 (2021). https://doi.org/10.1038/s41587-021-01108-x
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3'd Generation Sequencing - ONT

Quality control
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Read quality
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Error correction (optional)
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¥
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Genome alignment

Transcriptome analyses

i
| Full-length transcript construction
| (de novo or reference genome guided)

—E——.

:
E Alternative splicing

|
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i
E Alternative polyadenylation

| Gene fusion
h
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§) OmIcs 3rd Generation Sequencing — SMRT-Seqg

Circularized DNA
is sequenced in
repeated passes

Technology
’:’ Slngle mOIeCUIe SequenC|ng |n ZMWS The polymerase reads
. . are trimmed of adapters
s SBS chemistry and photometrics o yild subteads
Advantages methylation satus e
< Merged reads from multiple passes enables el om subreace e
. .9% accuracy,
higher accuracy compared to ONT (Q30+)
7/ .
‘:’ Read Ie_ngth N_50' 10 §O!<b . . A single molecule of DNA is immobilized in each ZMW
s Genomic + Epigenomic information (5mC in
CHG context) ’? | As anchored
3 e 7 | g & g mh polymerases
Disad { % NET— 1 i u% ;1 ;“4 incorporate
isadvantages - Sl e {00 1 T I labeled bases,
B H|gher costs Compared to ONT Sequencing SMRT® Cells contain millions of i _ ' - . light is emitted

zero-mode waveguides (ZMWs)

($43-86/Gb vs. $21-42/Gb) I N B
i | I Bll\r;c:%/océ?;ii:ttions

> 1 1
SMRTbell templates enable g = R : i i during sequencing
repeated sequencing of circular £ i
template with real-time 5 A l C T G |
detection of base incorporation = ;
«*‘ — Time o ) .
Nucleotide incorporation kinetics

are measured in real time
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https://www.pach.com/technology/hifi-sequencing/how-it-works/
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/— 34 Gen Technology\

PacBio

e Long-read lengths
Advantag es e High consensus accuracy
e Low degree of bias
e Simultaneous epigenetic
characterization

Disadvantages

O O O O

o

Ermini et al. Cancers 2024, 16, 1275. https://doi.org/10.3390/cancers16071275

Oxford Nanopore

=

|

e Ultra-long read lengths

e Real-time sequencing

® Low degree of bias

e Simultaneous epigenetic
characterization and
direct RNA sequencing

e Cost-effectiveness

e Scalability and portability

o _/

Higher costs per gigabase

Lower sequencing accuracy
Computationally demanding

Less suitable for targeted seq and high-

indepth variant analysis

Requires larger input and high-quality

samples

10

2"d Gen (NGS) Technology

IHlumina

|l]_|‘|l Library and
; Sequencing
|

_— -
ey
s == Reads
—— =
=

Assembled
Genome

e High throughput and speed

e Accuracy and reliability

e Scalable and versatile

e User-friendly and well
established technology

e Low cost per gigabase

o Read length limitation
o Requires higher sequencing depth to

cover genome

o Not suitable for high-quality de novo

assembly on itself

BE WHAT THE WORLD NEEDS
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Technology
% various

K/

s Utilizes any standard NGS technologies

R/

s 10-50k reads per cell & 1k-mio cells

Advantages

s comparison of the transcriptomes of individual
cells

% Addresses tissue heterogeneity (e.g.
embryonic or immune cells)

+ ldentification of rare cell populations (e.g.
normal-tumor interfaces)

% Characterization of unique cells (e.g. T-
lymphocytes, neurons)

» Cell fate diversification

Disadvantages
s High costs

X/

+ Computation intense

https://www.antteknik.com/en/products/?p=invitrogen-countess-3-automated-cell-counter; Simone, M., et al. (2024) Nucleic Acids Research 53(2); https://www.miltenyibiotec.com; Haque et al. Genome Med 9, 75 (2017). https://doi.org/10.1186/s13073-017-0467-4

* B
oy
s

n

Emulsion based

Microwell based

e S l—

Cell suspension . Combinatorial indexing

32
28
prise
prist
au

Hydrogel encapsulation
- se

Kl
| RL

17

@©

oY

ATACGATAATTCCGA
CATTGATATGTCTAAT
GCCTTACAATCTTT
ATACGAGCAAAGGAA
GCCTTACTAATTATA
CATTGAGATTGGGTA

|

®

Changes to sample prep: scRNA-Seq

Isolate single calls from a tssue sample (including micro-dissection
and manipulation, flow cytometric cell-sorting, microfuidic platiorms,
and

Single cell lysis in a way that preserves cellular mRNA

mRNA molecule capturs using poly{T] sequence
primers that bind 1o mRNA poly[A] tails

Convert poly(T]-primed mRNA into
©DNA using reverse transcription

CDNA amplification (usually by
PCR or by in vitro transcription)

cDNA sequencing Fbrary preparation (insert ndex’
nuclootide barcodes to idontily each library)

Pool cONA sequencing libraries

Use bicinformasic methods to perform quality control
and to assess technical variability in the scRNA-seq data.

methods lo interprel robust data biologically

BE WHAT THE WORLD NEEDS
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Technology
+ Combines FISH and standard NGS for spatial
genomics (clusters - not single cell)

s Commercial ISS technologies: ~a Nes-BASED (.
o 10X Genomics Xenium & Visium . @ ¢ 5 Library preparation= Next-gene(ation Alignment
o Curio Bio SEEKER b A MRNA e

Capture

 poly-T
spatial barcode

Ap p roaches spots/cells $2%52

% NGS-based (Slide-Seq, DBiT-Seq) 2 Roling A

2 1SS (HybISS: Hybridization-based in situ 3| o msnu b . [ g
sequencing (Nilsson lab, U Stockholm), FISSEQ 2 seq"e"m_oMummg ' > S }.;-j C R —— S
fluorescent in situ RNA sequencing (Church lab, s + imaging 2 ‘gnmen g}gl,gv “r:,m .
Wyss Institute), INSTA-Seq: in situ transcriptome - N "?ff.iiw

accessibility sequencing (Lee lab, CSH) hybridization

= Gene A
=Gene B
«Gene C

% ISH (MERFISH, SeqFISH) hyirfﬁ.fé‘t‘.‘on '
v Ey.ﬁm"é’éfﬁéms

Applications
s Cell type identification

)/

% Tumor-immune composition

X/

% Cellular-molecular organization

X/

% Tracking cell fate/development

Expression
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@omics Changes to sample prep : In situ sequencing (ISS)

1 AlS, Noguchi type B Epithelial cell Stromal/immune cell
Technology Ry, T5U-21 col g
+ Combines FISH and standard NGS for spatial Tumor cell
genomics (clusters - not single cell) '

s Commercial ISS technologies:

o 10X Genomics Xenium & Visium

o Curio Bio SEEKER
Approaches ; ‘ 351,742 cells
% NGS-based (Slide-Seq, DBiT-Seq) I iR anacriote perical

% ISS (HybISS: Hybridization-based in situ
sequencing (Nilsson lab, U Stockholm), FISSEQ:
fluorescent in situ RNA sequencing (Church lab,
Wyss Institute), INSTA-Seq: in situ transcriptome
accessibility sequencing (Lee lab, CSH)

% ISH (MERFISH, SeqFISH)

Cd o

Applications

Cell type identification
Tumor-immune composition
Cellular-molecular organization
Tracking cell fate/development

3

%

R/
0‘0

3

hS
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@omics Changes to sample prep : In situ sequencing (ISS)

Technology
+ Combines FISH and standard NGS for spatial
genomics (clusters - not single cell)
s Commercial ISS technologies:
o 10X Genomics Xenium & Visium
o Curio Bio SEEKER

Approaches
s NGS-based (Slide-Seq, DBIT-Seq)
% ISS (HybISS: Hybridization-based in situ

sequencing (Nilsson lab, U Stockholm), FISSEQ:

fluorescent in situ RNA sequencing (Church lab,
Wyss Institute), INSTA-Seq: in situ transcriptome
accessibility sequencing (Lee lab, CSH)

% ISH (MERFISH, SeqFISH)

Applications

Cell type identification
Tumor-immune composition
Cellular-molecular organization
Tracking cell fate/development

3

%

/
0‘0

3

*

/
0‘0

https://www.10xgenomics.com
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g)omics Changes to sample prep : In situ sequencing (ISS)

USASK

Technology
+ Combines FISH and standard NGS for spatial
genomics (clusters - not single cell)
s Commercial ISS technologies:
o 10X Genomics Xenium & Visium
o Curio Bio SEEKER

Approaches

s NGS-based (Slide-Seq, DBIT-Seq)

s ISS (HybISS: Hybridization-based in situ
sequencing (Nilsson lab, U Stockholm), FISSEQ:
fluorescent in situ RNA sequencing (Church lab,
Wyss Institute), INSTA-Seq: in situ transcriptome
accessibility sequencing (Lee lab, CSH)

% ISH (MERFISH, SeqFISH)

Applications

Cell type identification
Tumor-immune composition
Cellular-molecular organization
Spatial mapping of transcript activity
Tracking cell fate/development

3

%

R/
0’0

3

%

3

hS

R/
0’0

Gyllborg et al. (2020) bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.931618

Cycle 2 Cycle 3

Cycle 4 Cycle 5

Fam19a1
Rab3c
Sema3e

Camkan1
Etv1
Hs3st1

Mouse coronal brain section
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§)0m|€5 Changes to sample prep : In situ sequencing (ISS)

USASK

Technology
+ Combines FISH and standard NGS for spatial
genomics (clusters - not single cell)
s Commercial ISS technologies:
o 10X Genomics Xenium & Visium
o Curio Bio SEEKER

Approaches

s NGS-based (Slide-Seq, DBIT-Seq)

s ISS (HybISS: Hybridization-based in situ
sequencing (Nilsson lab, U Stockholm), FISSEQ:
fluorescent in situ RNA sequencing (Church lab,
Wyss Institute), INSTA-Seq: in situ transcriptome
accessibility sequencing (Lee lab, CSH)

% ISH (MERFISH, SeqFISH)

Applications

Cell type identification

Tumor-immune composition

Cellular-molecular organization

Spatial mapping of transcript activity

Tracking cell fate/development, e.g. to understand
developmental disorders

/ 7
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https://www.10xgenomics.com
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Changes to sample prep:

USASK
a Spatially addressed labeling with DNA photolithography .
No UV uv Crosslinked
Technology = = —~ 8
% photocrosslinkable nucleosides analog to Patemed 77 Barcoded
‘geotag’ the transcriptome of target cells in T =
situ by light-controlled attachment of DNA
barcodes
+« high resolution imaging with standard NGS
Advantages
s Profiling of multiple different cell populations B g i RO SR B0 Y
in fixed biological samples - ~—)
% Spatial resolution of gene expression /13 \ ‘ / )
< microscopically analyzed cells kept intact Q\_/’““*J ) W\ SNy
¢ rounds
during RNA expression profiling which
allows sequential measurements
(2) Extract barcoded reads + sequence with bulk NGS
e > e Optional
I;c:g:;ds ; i B, Follow-up
fn = > B Shi B v
o gl = S § [ A i
Ragion D g

Kishi, J.Y et al. Nat Methods 19, 1393-1402 (2022).

https://doi.org/10.1038/s41592-022-01604-1
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OMICsS Changes to the hardware: The spinning disc

RESOURCE CENTRE
USASK

Off-the-shelf semiconductor hardware
o spinning silicon wafer substitute flow cells

Traditional chemistry
o natural sequencing-by-synthesis (MnSBS)

Open-fluidics-system and fixed optics
o Sequencing reagents are added via spin-
coating, and for readout of DNA sequence, the
silicon wafer rotates while fixed dual high-
speed cameras capture DNA clusters
immobilized on the wafer.

Advantages:

Ultra-high-throughput and ultra-low costs ($100
Genome)

Short run-times, e.g. six human genomes in 20hrs
Longer average read lengths (300-400+ cycles)

Almogy et al.bioRxiv 2022.05.29.493900; doi: https://doi.org/10.1101/2022.05.29.493900
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% Changes to lllumina’s SBS
chemistry

O

O

Circularization of the
DNA library molecule on
a capture primer
RC-Amplification copies
ccDNA into a continues
strand bound into a
polony

Sequencing using
Avidites

+ Advantages

ANENENEN

No PCR artifacts
Reduced error rate
Reduced costs

No index hopping

Bind avidite

— Detect base —

Remove avidite

—

Changes to the chemistry: ABC-sequencing

Step with block —>  Remove block

&

Reversibly terminated
nucleotide
o L

AVITI @
ORC | WCVM!
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@’ omics The “Future” of sequencing: NGSX

Cell membrane

s

gPCR { o

Nu:/leus BA

8; Protein

(' Translation
~ (mRNA - protein)

_ l . CITEsseq
NGS

Ribosome

Transcrlptlon
(DNA —RNA) U

ISH

25

High Content Analysis

Morphology

» Integration of true multiomics capabilities on a single
instrument without the need of auxiliary equipment

26
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Cytoplasm
~ Amino acids

https://www.elementbiosciences.com/; R. Hesketh, The War on Cancer, New York (2012) p.65; Satam H, et al. Biology 2023 12(7):997. doi: 10.3390/biology12070997
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s Technology:
o Teton CytoProfiling + ABC
sequencing from Element
Biosciences

+ True multiomics on a single
instrument

o Cell morphology

o RNA detection (~350-plex)
o Protein detection (~50-plex)

s Use cases:

Cellular profiling

drug response studies

in situ single cell RNA-Seq
cell synchronization

O O O O

https://www.elementbiosciences.com/

Direct in sample sequencing (DISS) for cells

<] hour 24 hours

Cell Preparation

Data Visualization

Wash, fix, and
permeabilize cells

Assemble Teton
Culture or deposit cells flow cell

directly on Teton flow cell

Up to 50k cells/well (12-well)
Up to 1M cells/well (1-well)

Flow cell

Cell praint g

(e.g. Actin+Nucleus) AN -

Transcript & protein
targets Single cell

BE WHAT THE WORLD NEEDS
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S OoMmics DISS for FFPE & fresh tissue
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USASK

Tissue cutting & transfer Flow cells with small/large G4x sequencing

samples
(i) /
™ il
-

(iv)

4

D)

)

» Technology:

o Tissue transfer + rapid 4-color
SBS sequencing by Singular
Genomics

L)

» True multiomics on a single
instrument

o fH&E (Hematoxylin and eosin)
o RNA detection (~153-plex)

L)

o Protein detection (~10-plex) RNA/Protein detection by affinity or Quantification & analysis
hybridization of antibodies/probes B
& Use cases: e R i _— Clustering RNA (MKI67) Protein (KI67) —

o late-stage translational research

(T2-T4); e.g. tumor-immune O T 3

interactions S = .
o Diagnostics; e.g. therapeutic i DetecﬁonmRNA ——

biomarkers

Spatial

A =k

e —
https://www.singulargenomics.com/g4x
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§) omics DISS use case #1: Visualize crosstalk of multiple
cellular processes

Multimodal Integration Normal
< Tumor-Immune interactions
(e.g. Colon normal vs cancer) g P
< &
% Visualize & sequence tissue o
with (Sub-)Cellular resolution : -
% Targeting 100 millions of ' .
. . - ot AR
transcripts in millions of cells 4
’0

% Integration of complex single
cell RNA & protein expression
profiles

normal_F03 cancer_EO3

@ Enterocyte . Tumor Fibroblast

@ Glial cell . Endothelial . Lymphatic

‘ T-cell . Plasma . VER

CAF . Monocyte Macrophage

@ vsmc @swvc @ Adipocyte

Necrotic @ B-cell
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Kenneth et al. Spatial Multiomic Profiling of Tumor-Immune Interactions in 2D and 3D on the G4X Spatial Sequencer, AGBT (2025)

UO!SSBJan ueswl




©Jomics DISS use case #2: Enhance therapeutic success

RESOURCE CENTRE
USASK

media
# 1
Serial Section Registration 5 2
D 44
o
5 41
% Reconstruction of Normal-Tumor | " 8
Interfaces | 0 20 40 60
| median # unique genes per cell
s - - RNA =2
+ 3D spatial neighborhood : c 2
. . : ) Protein | S 2
analysis to identify niches of FURE — g s
healthy vs cancerogenous tissue 6.2 Million Cells s ¥
438 Million Transcripts % 8
. . 10
s Monitoring effects of tumor- 0 10 20 30 40
modulating drugs e.g. to

enhance effectiveness of Cell Type Composition of Niches 3D Niches
chemotherapies e e T e T e T :

Tumor
VSMC

ol Y -

Niche
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Kenneth et al. Spatial Multiomic Profiling of Tumor-Immune Interactions in 2D and 3D on the G4X Spatial Sequencer, AGBT (2025)



®]omics  DISS use case #3: Personalized drug therapy

RESOURCE CENTRE
USASK

% Drug-induced changes to RNA,

. . TNF-a

protein, phosphoprotein, and v o - - o o _—
morphology R y
% Multiomic readouts identifies RNAs ‘l' E,
and Proteins driving the changes of TRADD 2
morphological states & resolves v N
complex mechanisms of drug TRAF2 g%’
response ¢ £3
ASKI )
< Multiomic readouts improve V +p s
classification of cells based on their Ea <
drug response \lf . z
T orotain and R resporse. e g

MAPKAPK

v

HSP27

v

Cell Cycle

Singe-Cell Classification Error

RNA

£ 5
£ g
T -4
o

https://www.elementbiosciences.com/
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©]omics Summary & Trends

RESOURCE CENTRE
USASK
v' Sequencing is a fast-evolving field of new emerging technologies
v New NGS methods are faster and more precise
v" Necessitate smaller amounts of input DNA and reagents

v" NGS technologies created new fields of research (e.g. pangenome
analysis, multiomics, cell atlases)

v" True multi-omics revolutionizes basic & translational research

How to handle the enormous amount of data (“big data”)?

Development of new bioinformatic tools, statistics, employ data
sharing, unified file formats and Al to help integrate data from
different “omes”

32
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YOUR sequencing partner in agricultural research,
from sample preparation to discovery.

OUR SERVICES:
; @ Sequencing (NGS)

HQP training

2%
% Metagenome

Sequencing
Services

Single Cell

(FFPE)
RNA/DNA

supply of sample collection
consumables (on demand)

Guidance & supply with g% FREE Project
ﬁ consultation & quotatio

bioinformatics tools

Primary data 0:n

. EASY Sample submission
analysn; s;'data B@ via\QRC Customer Portal
ey ORC End-to-end "=

~ NGS workflow

Next Generation = Sampl
A n e
Sequencing (NGS)

NGS library Q & Custom SOP
preparation !5 development

Nucleic acid isolation &
sample quality checks

Dr. Martin Mau = orc@usask.ca * +1(306) 966 7424 » WCVM RM2209

M Funded by
L2 USASK * WCVM « INTEGROMES

(%ﬁ User-driven experiments

@ Instrument booking:

The Omics Resource Centre (ORC)
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Thank youl!
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